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Abstract Testing of Hardy–Weinberg proportions

(HWP) with asymptotic goodness-of-fit tests is problematic

when the contingency table of observed genotype counts

has sparse cells or the sample size is low, and exact pro-

cedures are to be preferred. Exact p-values can be (1)

calculated via computational demanding enumeration

methods or (2) approximated via simulation methods. Our

objective was to develop a new algorithm for exact tests of

HWP with multiple alleles on the basis of conditional

probabilities of genotype arrays, which is faster than

existing algorithms. We derived an algorithm for calcu-

lating the exact permutation significance value without

enumerating all genotype arrays having the same allele

counts as the observed one. The algorithm can be used for

testing HWP by (1) summation of the conditional proba-

bilities of occurrence of genotype arrays with smaller

probability than the observed one, and (2) comparison of

the sum with a nominal Type I error rate a. Application to

published experimental data from seven maize populations

showed that the exact test is computationally feasible and

reduces the number of enumerated genotype count matrices

about 30% compared with previously published algorithms.

Introduction

The Hardy–Weinberg law (Hardy 1908; Weinberg 1908)

states that in a large random mating population of diploid

individuals in the absence of mutation, selection, and drift

(1) allele and genotype frequencies remain constant from

generation to generation and (2) for an autosomal locus

with m alleles A1, A2, ..., Am the expected genotype fre-

quencies are

Pii ¼ p2
i for homozygotes AiAi and

Pij ¼ 2pipj for heterozygotes AiAj

ð1Þ

where pi is the allele frequency of Ai. Testing H0: ‘‘The

genotype frequencies in a population follow the distribu-

tion described by Eq. 1’’ are commonly referred to as tests

for Hardy–Weinberg proportions (HWP, Weir 1996). The

assumption of HWP is the basis of many concepts in

population genetics and quantitative genetics (Crow 1988).

For example, HWP tests can be applied (1) to gather

information on the mating system and genetic structure of

wild and breeding populations (Semerikov et al. 2002; Reif

et al. 2004), (2) to detect population admixture (Deng et al.

2001), and (3) to detect marker phenotype associations

(Nielsen et al. 1999). Therefore, tests of HWP are of cru-

cial importance in plant, animal and human genetics as

well as evolutionary studies.

In principle two approaches are possible to test for

HWP: (1) Asymptotic goodness-of-fit tests, such as v2 or

likelihood ratio tests, for which the distribution of the test

statistic under the null hypothesis H0 is approximately

known for large samples. (2) Exact tests based on the

probability of occurrence of genotype arrays (Weir 1996,

chap. 3).
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Asymptotic goodness-of-fit tests are computationally

simple and fast, yet it is known that they can lead to false

rejection or non-rejection of the null-hypothesis of HWP,

especially with small sample sizes and/or sparse cells

(Elston and Forthofer 1977). Several corrections for small

sample sizes have been proposed, but in general these do

not substantially improve the performance of the tests

(Emigh 1980; Hernández and Weir 1989). With the advent

of highly polymorphic DNA markers such as SSRs, an

additional problem has emerged. It is not unusual that more

than two alleles per marker locus are observed in popula-

tion samples, most of which occur with rather low fre-

quencies. Consequently, for many cells of the contingency

table of observed genotype counts, only a few or even no

individuals are observed. Applying goodness-of-fit tests to

such data is problematic, because small expected cell

counts can inflate the test statistic (Hernández and Weir

1989). In such cases, alleles with low frequencies are often

pooled to meet the prerequisites of the test, yet this is

expected to result in a loss of power.

Exact tests are computationally demanding, but they are

preferred over asymptotic goodness-of-fit tests when the

sample size is small and/or table cells are sparse, because

they do not require large sample assumptions. When the

computational demand exceeds the available capacities, the

distribution of the test statistic under the null hypothesis

can be approximated with Monte Carlo methods (Guo and

Thompson 1992; Huber et al. 2006).

Wellek (2004) constructed a computationally efficient

exact HWP test for loci with two alleles. For loci with

m = 2, 3, 4 alleles Louis and Dempster (1987) suggested to

determine the distribution of the test statistic under H0 for

an exact HWP test with a complete enumeration of all

possible contingency tables with the given marginals. They

noted that their method could be extended to arbitrary

numbers of alleles. However, it has the shortcoming that it

needs to be elaborated and also programmed separately for

each possible allele number m. Aoki (2003) adopted the

network algorithm of Mehta and Patel (1983) for tests in r

· c contingency tables to reduce the computational effort

of the complete enumeration algorithm. Pagano and Taylor

Halvorsen (1981) introduced an incomplete enumeration

technique for finding exact significance levels in r · c

contingency tables, which omits enumeration of contin-

gency tables with a larger conditional probability of

occurrence than the observed one.

Our objectives were to (1) develop an incomplete enu-

meration algorithm for an exact HWP test with multiple

alleles by adopting the concept of Pagano and Taylor

Halvorsen (1981), and (2) illustrate its computational

advantages in comparison to complete enumeration and the

network algorithm of Aoki (2003) with an example of

experimental data from seven maize populations.

Exact HWP test for m alleles

We follow the notation of Guo and Thompson (1992) and

consider an autosomal locus with m alleles A1, A2, ..., Am.

The observed genotype counts in a sample of n individuals

can be presented as the array

where fi, j (1£i £j£m) is the count of genotype Ai Aj. The

upper diagonal matrix of genotype counts is denoted by

F = {fi, j}1£i£j£m. The allele counts in the sample are de-

noted by the vector f = {fi}1£i£m with fi ¼
Pi

j¼1 fj;iþ
Pm

j¼i fi;j:

Under HWP and conditional on the allele counts f, the

probability of occurrence of the genotype count matrix F is

(Levene 1949)

PðFjfÞ ¼ n!
Qm

i¼1 fi!

ð2nÞ! � 2

P
i\j

fi;j

Q
i� j fi;j!

:

For testing the null hypothesis H0: ‘‘Genotypes in the

population occur in HWP’’, we need to determine the

probability

p ¼
X

G2Gf ;F

PðGjfÞ; ð2Þ

where the set Gf ;F contains all genotype count matrices G

which have the same allele counts f as the observed

genotype count matrix F, but have a smaller or equal

conditional probability of occurrence

Gf ;F ¼ GjG 2 Gf ;PðGjfÞ�PðFjfÞ
� �

; ð3Þ

where Gf is the set of all genotype count matrices

G = {gi, j}1£i£j£m having the same allele counts f as the

observed genotype count matrix F:

Gf ¼ Gj8i ¼ 1; . . . ;m : fi ¼
Xi

j¼1

gj;i þ
Xm

j¼i

gi;j

( )

If p is smaller than a given Type I error rate a, then H0 is

rejected.
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Incomplete enumeration algorithm

Notation and outline of the algorithm

Let the function n : Gf ! N uniquely assign to each

genotype matrix G a positive integer, which is denoted in a

number system with radix r = max (fi + 1 | 1 £ i £ m):

nðGÞ ¼ ðg1;1g1;2 . . . g1;mg2;2 . . . g2;m . . . gm;mÞr
The digits of the n(G) are the elements {gi, j}i£j£m of the

upper diagonal of the genotype count matrix G 2 Gf : We

denote with nf = || Ff || the number of elements in the

image set

Uf ¼ fnðG1Þ; . . . ; nðGkÞ; nðGkþ1Þ; . . . ; nðGnf
Þg ¼ nðGf Þ

where

nðGkÞ\nðGlÞ for 1� k\l� nf :

For convenience in notation we define for each i = 1, ..., m

si ¼ fgi;jgi� j�m:

We further define an ordering on the set

I ¼ fði; jÞji ¼ 1 . . . m; i� j�mg

such that

ði; jÞ � ðl; kÞ iff i > l or ði ¼ l and j > kÞ:

For calculating p according to Eq. 2, the probability P(G

| f) is summed over all elements G 2 Gf ;F: In consequence,

we need a method for enumerating every genotype count

matrix G 2 Gf ;F without enumerating all genotype count

matrices G 2 Gf : We start by describing a general algo-

rithm for complete enumeration of all genotype count

matrices G 2 Gf consisting of two steps: (1) Construction

of the smallest element n(G1) 2 Ff and (2) construction of

all elements of Ff recursively by finding n(Gk+1) on the

basis of n(Gk) until nðGnf
Þ is reached. Subsequently, we

describe the rules to determine the G 62 Gf ;F which are not

enumerated by the incomplete enumeration algorithm.

Part 1: Construction of n(G1)

The smallest number n(G1) can be constructed by first

determining s1 and then determining in sequential

manner si proceeding from i = 2 to i = m. The elements

of a sequence si (i = 1 ... m) are determined by starting

with gi, m and then determining in sequential manner

gi, j by proceeding from j = m–1 to j = i. Consider a

sequence si (i = 1 ... m) and assume that all sequences

sk ðk 2K; with K ¼ fk 2 Nj1� k\igÞ were already

determined in previous steps and, hence, fixed. (Note that

for i = 1 we have K ¼ ;; because s1 is the first sequence

that is determined.) We define

Ci;j ¼
P

1� k\i

gk;j for i > 1

0 for i ¼ 1

(

ð4Þ

Likewise, for fixed elements gi, l (l = j + 1, ..., m) of si

we define

Ri;j ¼
P

j\l�m

gi;l for j\m

0 for j ¼ m:

(

ð5Þ

Using these definitions we have for a fixed i and

1 £ i £ j £ m

fi ¼ Ci;i þ gi;i þ
X

i� l� j

gi;l þ Ri;j ð6Þ

and for a fixed j and 1 £ i < j £ m

fj ¼ Ci;j þ gi;j þ
X

i\k� j

gk;j þ
X

j� l�m

gj;l: ð7Þ

In consequence, by defining

gi;j ¼
min fi � Ci;i � Ri;j; fj � Ci;j

� �
for i\j

ðfi � Ci;i � Ri;iÞ=2 for i ¼ j

�

ð8Þ

we choose the maximum element gi, j, which fulfills the

conditions (6) and (7). The resulting number is the smallest

element of Ff, because the sequences si are constructed

from right to left.

Part 2: Construction of n(Gk+1) given n(Gk)

Let gi, j and gi, j
* denote the digits of n(Gk) and n(Gk+1)

2 Ff, respectively. First, the indices (i¢, j¢) 2 I are deter-

mined according to the following rules. We define for

each (i, j)

q
ði;jÞ
i ¼ Ri;j for i� j

and

q
ði;jÞ
j ¼ fj � Ci;j � gi;j for i\j:

We then start with

ði; jÞ ¼ ðm� 1;m� 1Þ ð9Þ

and check whether
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q
ði;jÞ
i > 0 and q

ði;jÞ
j > 0 for i\j

or

q
ði;jÞ
i > 1 for i ¼ j

holds true. If so, then (i¢, j¢) = (i, j), if not the next smallest

(i, j) is checked. This procedure is continued until (i¢, j¢) is

found or until i = j = 1 and qi
(i, j) = 0. In the latter case

nðGkÞ ¼ nðGnf
Þ is the largest number and the enumeration

stops. Note, that we start with (i, j) = (m–1, m–1) because

Ri, m = 0 (Eq. 5) and in consequence qi
(i, m) = 0.

If (i¢, j¢) is found, the digits of n(Gk+1) are determined

with a four step procedure: First

g�i;j ¼ gi;j for all ði; jÞ � ði0; j0Þ;

second

g�i0;j0 ¼ gi0;j0 þ 1;

third, the digits g�i0;jðj0\j�mÞ are determined in

descending order of (i¢, j), starting with j = m and

proceeding until j = j¢ + 1 reached, as

g�i0;j¼min fi0 �Ci0;i0 �R�i0;j�g�i0;i0 �
X

i0�k�j0
g�i0;k

 !

; fj�Ci0;j

� �
 !

where Ri, j
* is defined according to Eq. 5 but using gi, j

* in-

stead of gi, j. By analogy we define Ci, j
* according to Eq. 4

but using gi, j
* instead of gi, j. Fourth, the elements of

s�i0þ1; . . . ; s�m are determined in recursive manner analo-

gously to the digits of n(G1) but using Ci, j
* and Ri, j

* instead

of Ci, j and Ri, j in Eq. 8.

Applying n–1 to all elements of Ff results in an enu-

meration of all elements G 2 Gf ; which is required for

determining Gf ;F in order to calculate p (Eq. 2) from the

probabilities P(G | f).

Part 3: Incomplete enumeration

We now extend the complete enumeration algorithm such

that only the elements G 2 Gf ;F are enumerated. The

procedure is analogous to a technique proposed by Pagano

and Taylor Halvorsen (1981) for computing the exact

significance levels of r · c contingency tables.

For loci with two alleles the application of the previ-

ously described complete enumeration algorithm results in

an enumeration of all genotype count matrices Gi 2 Gf

with i = 1, ..., nf having the same allele counts f as the

observed genotype count matrix F. The respective proba-

bilities of occurrence P(Gi|f) with i = 1, ..., nf form a

unimodal sequence. Thus, there exists a t with 1 £ t £ nf

such that PðG1jfÞ� � � � �PðGtjfÞ and PðGtjfÞ� � � � �
PðGnf

jfÞ holds true. The idea behind the incomplete enu-

meration algorithm can be summarized as follows: First,

enumerate all genotype count matrices in ascending order

starting from G1, ..., Gl until a genotype count matrix

Gl 62 Gf ;F with P(Gl|f) > P(F|f) is found. Second, enu-

merate all genotype count matrices in descending order

starting from Gnf
; . . . ;Gr until a genotype count matrix

Gr 62 Gf ;F with P(Gr|f) > P(F|f) is found. Thus, only

genotype count matrices G1; . . . ;Gl; Gr; . . . ;Gnf
with

1 £ l £ r £ nf are enumerated and the enumeration of

genotype count matrices between Gl+1, ..., Gr-1 is omitted.

For loci with more than two alleles, the sequence of

conditional probabilities P(Gi|f) with i = 1, ..., nf is mul-

timodal and can be dissected into unimodal sequences.

Two genotype count matrices G and G* are elements of the

same unimodal sequence if their digits

gi;j ¼ g�i;j for all ði; jÞ � ðm� 1;m� 1Þ:

Incomplete enumeration is done by finding for each

unimodal sequence of conditional probabilities the first

genotype count matrix G 62 Gf ;F with digits gi, j.

Subsequently, the digits gi, j
* of the next enumerated

genotype count matrix G� 2 Gf are determined with a

four step procedure: First, set (i¢, j¢) = (m–1, m–1),

g�i;j ¼ gi;j for all ði; jÞ � ði0; j0Þ;

second

g�i0;j0 ¼ gi0;j0 þ
gi0;j0þ1

2

j k
; ð10Þ

third, the digit g�i0;j0þ1 is determined as

g�i0;j0þ1 ¼ gi0;j0þ1 mod 2; ð11Þ

fourth, the digit g�i0þ1;j0þ1 is determined as

g�i0þ1;j0þ1 ¼ gi0þ1;j0þ1 þ
gi0;j0þ1

2

j k
: ð12Þ

If the genotype count matrix G� 2 Gf ;F ; then the next

smaller genotype count matrix is determined analogously,

but using g�i0;j0 ¼ gi0;j0 � 1 in Eq. 10, g�i0;j0þ1 ¼ gi0;j0þ1 þ 2 in

Eq. 11, and g�i0þ1;j0þ1 ¼ gi0þ1;j0þ1 � 1 in Eq. 12. Otherwise

the algorithm is continued by using (i, j) = (m–2, m–1) in

Eq. 9.

Part 4: Hybrid algorithm

The incomplete enumeration algorithm for testing Hardy-

Weinberg proportions as described in the previous section
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and the network algorithm proposed by Aoki (2003) can be

combined into a single hybrid algorithm. In a first step, a

network representation of all elements of the set Gf is

constructed, in which each element of Gf corresponds to a

distinct path from the initial node to the terminal node

through a network consisting of nodes and arcs. In a second

step, all paths through the network are enumerated in the

order of the described complete enumeration algorithm.

However, using the Theorems 1 and 2 of Aoki (2003),

some of the paths can be trimmed and their complete

enumeration is omitted. If no trimming occurred for a

single path through the network, then the incomplete

enumeration technique as described in the previous section

is applied.

Discussion

Computing time is often a limiting factor in carrying out

exact tests. We illustrate the required number of enumer-

ated genotype count matrices to calculate the exact test of

HWP which directly affects the required computing time

for the exact test of HWP with an example from a genetic

diversity study in maize (Reif et al. 2003). Its objective

was to investigate the relationship of genetic distance based

on molecular markers with heterosis in population crosses

in order to establish heterotic pools for hybrid breeding. To

estimate genetic distances between seven tropical maize

populations, 48 individuals were sampled from each pop-

ulation and investigated with 85 simple sequence repeat

(SSR) markers. For a correct quantitative genetic inter-

pretation of the heterosis observed in population crosses in

a previous study (Vasal et al. 1992), it is important to

know, whether the base populations are in HWP or whether

they deviate from the HWP owing to inbreeding, selection

or other reasons.

We implemented four different algorithms to calculate

the exact p-values for testing HWP. CE: a complete enu-

meration algorithm, IE: the proposed incomplete enumer-

ation algorithm, NE: the network algorithm according to

Aoki (2003), and IN: a hybrid algorithm combining

incomplete enumeration as described in the previous sec-

tion with Theorems 1 and 2 of Aoki (2003).

For loci with less than six alleles, which comprised 87.6%

of all 7 · 85 = 595 tests, the average computing time was

about nine seconds per test, employing the complete enu-

meration on a personal computer (AMD Opteron 248 pro-

cessor, program written in C). The maximum computing

time required for a locus with six alleles was 18 min. For 60

loci with more than six alleles, carrying out the exact test

with complete enumeration was not possible within 1 h.

Both, incomplete enumeration and network algorithm

reduced the number of enumerated genotype count matri-

ces considerably compared with complete enumeration

(Table 1). For three or more alleles, the hybrid algorithm

reduced the number of enumerated matrices up to a factor

of 7.5 compared to complete enumeration and about 25–

30% compared to the network algorithm.

The network algorithm performs best if the p-values are

large (Aoki 2003), whereas our algorithm performs better

with small p-values, because only genotype count matrices

with a smaller conditional probability of occurrence than

the observed one are enumerated. Therefore, both ap-

proaches are complementing each other, which explains the

superiority of the hybrid algorithm. Summarizing, with the

proposed hybrid algorithm the bounds of computational

feasibility of the exact test of Hardy–Weinberg were sig-

nificantly extended. We conclude that with today’s com-

puting resources, exact HWP tests are practicable either

with large population sizes and biallelic markers or with

medium population sizes and numbers of alleles. It must be

noted, however, that for loci with more than two alleles the

required computing time increases exponentially with the

number of individuals and alleles investigated.

Pearson’s v2 test is often used to test HWP. However, it is

well known that the distribution of the test statistic is only

poorly approximated by the v2 distribution if contingency

tables are sparsely occupied (Agresti 1996; Hernández and

Weir 1989; Wigginton et al. 2005). In our dataset, the

distribution of allele frequencies was skewed, on average

Table 1 Mean number of

enumerated genotype count

matrices required to calculate

the exact test of HWP in the

sample dataset for different

number of alleles and four

algorithms

CE complete enumeration, IE
incomplete enumeration, NE
network algorithm, IN
incomplete network algorithm

No. of

alleles m
No. of markers

with m alleles

Mean no. of enumerated genotype count matrices

CE IE NE IN

1 14 – – – –

2 96 12 11 12 11

3 170 297 224 201 147

4 122 24 208 18 557 11 368 7 918

5 82 3 194 751 2 346 638 766 303 596 553

6 51 68 808 888 47 689 855 31 202 750 21 441 493

7 27 5 787 883 573 3 605 185 045 1 033 897 968 760 752 194

> 7 33 – – – –
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4.02 alleles were observed per locus and the two most fre-

quent alleles had a total frequency of 0.85. This resulted in a

sparsely occupied contingency table of observed genotype

counts. As a consequence, the v2 test is expected to result in

a high rate of incorrectly rejecting or accepting the null

hypothesis of HWP.

Monte Carlo approximations of the probability p can be

obtained by evaluating only a random sample of all pos-

sible genotype count matrices G 2 Gf (Guo and Thompson

1992; Huber et al. 2006). The estimated p values of a

Monte Carlo test with 17,000 repetitions (as suggested by

Guo and Thompson 1992) were in good accordance with

those of the exact test (results not shown). Thus, Monte

Carlo tests provide a valuable tool for approximating the

probability p of the exact test. However, approximating p

seems only appropriate when there are substantial prob-

lems in calculating the exact value of p, e.g., in the case of

large population sizes and multiple alleles.

Extension of our method to one-sided tests of HWP is

straightforward by defining Gf ;F such that it contains only

genotype count matrices, for which the count of homo-

zygotes is greater (right-sided test) or smaller (left-sided

test) than the number of homozygotes expected under

HWP. The proposed algorithm can also be extended to

exact tests for linkage disequilibrium, because these are

also based on conditional probabilities of contingency ta-

bles of genotype counts.

Our results illustrate that the proposed incomplete enu-

meration algorithm for testing deviations from HWP sig-

nificantly extends the range of computational feasible

problems. Owing to the superior performance of the exact

test, the presented approach can help experimenters to

analyze datasets and extract the maximum possible infor-

mation, even when only sparsely occupied contingency

tables are available and, therefore, the large sample

assumptions underlying the v2 goodness-of-fit tests do not

apply, as frequently occurs in molecular marker studies

with plants.

The routines developed for performing exact tests of

HWP with the described enumeration algorithm are avail-

able in software Plabsoft (Maurer et al. 2004).
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Weinberg W (1908) Über den Nachweis der Vererbung beim

Menschen. Jahreshefte des Württembergischen Vereins für
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